Neural Temporal Relation Extraction
نویسندگان
چکیده
We experiment with neural architectures for temporal relation extraction and establish a new state-of-the-art for several scenarios. We find that neural models with only tokens as input outperform state-ofthe-art hand-engineered feature-based models, that convolutional neural networks outperform LSTM models, and that encoding relation arguments with XML tags outperforms a traditional position-based encoding.
منابع مشابه
Neural Architecture for Temporal Relation Extraction: A Bi-LSTM Approach for Detecting Narrative Containers
We present a neural architecture for containment relation identification between medical events and/or temporal expressions. We experiment on a corpus of deidentified clinical notes in English from the Mayo Clinic, namely the THYME corpus. Our model achieves an F-measure of 0.613 and outperforms the best result reported on this corpus to date.
متن کاملLIMSI-COT at SemEval-2017 Task 12: Neural Architecture for Temporal Information Extraction from Clinical Narratives
In this paper we present our participation to SemEval 2017 Task 12. We used a neural network based approach for entity and temporal relation extraction, and experimented with two domain adaptation strategies. We achieved competitive performance for both tasks.
متن کاملRepresentations of Time Expressions for Temporal Relation Extraction with Convolutional Neural Networks
Token sequences are often used as the input for Convolutional Neural Networks (CNNs) in natural language processing. However, they might not be an ideal representation for time expressions, which are long, highly varied, and semantically complex. We describe a method for representing time expressions with single pseudotokens for CNNs. With this method, we establish a new state-of-the-art result...
متن کاملImproving First Order Temporal Fact Extraction with Unreliable Data
In this paper, we deal with the task of extracting first order temporal facts from free text. This task is a subtask of relation extraction and it aims at extracting relations between entity and time. Currently, the field of relation extraction mainly focuses on extracting relations between entities. However, we observe that the multi-granular nature of time expressions can help us divide the d...
متن کاملBrundlefly at SemEval-2016 Task 12: Recurrent Neural Networks vs. Joint Inference for Clinical Temporal Information Extraction
We submitted two systems to the SemEval2016 Task 12: Clinical TempEval challenge, participating in Phase 1, where we identified text spans of time and event expressions in clinical notes and Phase 2, where we predicted a relation between an event and its parent document creation time. For temporal entity extraction, we find that a joint inference-based approach using structured prediction outpe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017